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ABSTRACT

Survival outcomes, such as overall survival or recurrence-free survival, are

called right-censored because for many patients the event has not yet occurred

at the last follow-up time. With an increased number of available features and

relatively small number of patients and even smaller number of events, dimen-

sionality reduction is needed to reduce the sparsity of the data and make standard

approaches such as Cox Proportional Hazards (Cox) model effective. Clustering is

used to identify similar groups within the data and can be thought as a dimension-

ality reduction technique when the cluster label is used in the analysis. Our goal is

to identify similar groups of patients that exhibit the same response to treatment or

expected outcomes in order to improve the prediction accuracy for new patients.

In this thesis, we explore different ways of leveraging clustering for im-

proved prognosis for head and neck cancer patients. To circumvent the right-

censoring of survival outcomes, we use the residuals from a Cox as the dependent

variable for guiding clustering of the data. We propose two approaches. The first

one, Supervised Scaled Clustering (SSC), uses the residuals to scale the features us-

ing a regression model before clustering the patients using K-medians and consen-

sus clustering. The second one, Supervised Domain Clustering (SDC), considers

groups of features and uses the residuals to learn the most suitable dissimilarity for

clustering. Cluster labels are then used as covariates within a Cox model and/or

other survival models. A rigorous experimental evaluation summarizes, compares

ii
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and contrasts different metrics for model comparison and performance evaluation.

Results show that our approaches find significantly discriminative groupings w.r.t.

to the outcomes, and can serve as a feature extraction method that can improve

performance while considerably reducing the dimensionality of the original fea-

ture space.
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PUBLIC ABSTRACT

Survival outcomes, such as overall survival or recurrence-free survival, are

called right-censored because for many patients the event has not yet occurred at

the last follow-up time. With an increasing number of potential risk factors avail-

able that can aid in improving prognosis, standard statistical modeling approaches

such as Cox Proportional Hazards may not be as effective in incorporating them.

Clustering is a machine learning task with the ultimate goal of identifying simi-

lar groups within the data and effectively condensing multiple risk factors repre-

sented by the cluster label. In this manner we are able to summarize the increasing

number of risk factors and find labels that identify not obvious, yet salient, similar-

ities that result from simultaneously considering these multiple risk factors. Once

one or multiple groupings have been identified we evaluate how these groupings

discriminate against the survival outcomes of interest. Finally we incorporate clus-

tering into standard approaches for risk modeling and evaluate and quantify the

improvement in prognosis.

iv
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CHAPTER 1
INTRODUCTION

Every year over 50,000 new cases of head and neck cancers are diagnosed

in the United States. This number is projected to rise in the future, especially

for oropharyngeal cancers, recently been associated with the incidence of HPV16

genotype infections [1].The American Joint Committee on Cancer (AJCC) and the

Union for International Cancer Control, maintains an internationally used stan-

dardized TNM Staging System. This system serves as a way to systematically

assess the severity of the cancer on individual subjects [2]. The vast majority of

risk stratification of head neck cancer patients uses staging systems that sub clas-

sify patients into four or less groups, based primarily on committee derived treat-

ment standards and approaches using existing data sets. These consider physical

examinations, imaging and laboratory tests, pathology and surgical reports, etc.

Establishing the AJCC stage for a patient considers various important anatomic

classifications and other risk factors that contribute to the overall assessment such

as T, N and M Categories. T Category relates to the extent of the primary tumor,

N Category relates to the spread to lymph nodes, and M Category indicates the

spread outside the T and N related areas. These classifications play a critical role

in the ultimate diagnosis and prognosis of an event (or outcome). The ability to

more accurately assess the underlying condition such that it improves the predic-

tion on various outcomes is a long standing clinical goal.

In the era of personalized cancer medicine, innovative sources of meaning-
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ful data are critically needed and increasingly becoming available. Radiomics is

one such “big data” approach that applies advanced image refining/data charac-

terization algorithms to generate imaging features that may be used to quantita-

tively classify tumor phenotypes in a noninvasive manner [3]. As the number of

radiomic features is very large, methods to extract or identify meaningful radiomic

signatures that have statistically significant correlations to patient outcomes are

needed [4]–[6].

There are multiple outcomes that can be considered in the context of head

and neck cancer, such as local control (primary site recurrence of tumor), regional

control (recurrence of tumor in non-primary site such as lymph nodes), distant

control (distant metastases, spread of the cancer outside of primary), loco-regional

control (combination of local and regional), overall survival, and recurrence free

survival or RFS (local, regional and distant control).

These patient outcomes are said to be right-censored because for some pa-

tients the time-to-event may be unknown. This is the case for patients where

the outcome has not been observed up to the last known follow-up time. Right-

censored data poses challenges to training methods, specially those that require a

known target. Nevertheless, the patients that have yet to incur an event can still

provide some useful information in order to predict the probability of an event

occurring at a certain time. Survival analysis attempts to use these right-censored

outcomes in a meaningful way rather than discarding them or ignoring the cen-

sored status.
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Right-censored outcomes is not the only challenge for risk modelling. A po-

tentially limiting issue is the sparsity of the data. The relatively small sample size

compared to an increasingly high dimensionality, requires us to address models

that may result in overfitting, and may be sensitive to noise as a result of it. More-

over, missing data and their imputation, especially for prognosis of new patients,

may exacerbate these issues by introducing biases and uncertainty in the analysis.

For prognosis, an important requirement is the interpretability of the re-

sults with respect to any meaningful features and perhaps further, with respect

to feature values. To this extent, machine learning approaches that facilitate this

interpretability are preferred such as Decision Trees (DTs) - and by extension Ran-

dom Forests which have variable importance measures across iterations. Other

widely used highly interpretable methods are Logistic Regression and the ubiqui-

tous Cox Proportional Hazards (cox) regression model from where Hazard Ratios

are commonly reported.

In this thesis, we explore different ways of leveraging clustering for im-

proved prognosis for head and neck cancer patients. In this work we combine

clinical data from various sources such as Electronic Health Record (EHR), di-

agnosis, demographic, and radiomic signatures in order to build risk prediction

models for OS and RFS. To simplify the discussion, we refer to all non-radiomic

features as clinical features. We propose the use of clustering as a dimensional-

ity reduction approach for both clinical and radiomic features. To circumvent the

right-censoring of the survival outcomes, the residuals from a Cox proportional
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hazards model are used as a dependent variable [7].

We explore two main avenues. In the first one, we look at incorporating

outcome information into the clustering algorithm in a Supervised Scaled Clus-

tering (SSC) approach. The residuals as the outcome proxy is used to scale the

features using a regression model and the patients are clustered using K-medians

and consensus clustering. In the second one, we consider several subspaces or

groups of features and apply clustering to each domain independently after learn-

ing the more relevant dissimilarity(ies) w.r.t. to the residuals. We call this method

Supervised Domain Clustering (SDC).

Cluster labels are then used as covariates within a Cox model and/or other

survival models. Several metrics are considered for model comparison and per-

formance evaluation. The metrics evaluated are the Akaike Information Criterion

(AIC), the log-likelihood ratio test (LRT), and additionally by evaluating Kaplan

Meier (KM) curves. We further evaluate the predictive performance against a com-

mon technique in survival analysis, Random Survival Forest (rsf), and other Cox

models with varying features. We compare these using the metrics of the area

under the curve (AUC), Brier, concordance index C-Index) and calibration. The

results show that the resulting clustering from both approaches are discriminative

w.r.t. to the outcome and moreover, that they can be used to improve prognosis.

This work follows the proposed guidelines for evaluating predictive models

in a clinical context [8]. These guidelines are intended to create a standardized

approach when using machine learning methods in order to have a streamlined
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reliable structure to assess proposed, existing, and clinically-used methods.

The rest of this thesis is organized as follows. Chapter 2 presents back-

ground and related work. Chapter 3 introduces the Supervised Scaled Clustering.

Chapter 4 describes the Supervised Domain Clustering approach. Finally, Chap-

ter 5 concludes discussing limitation and future work directions.
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CHAPTER 2
BACKGROUND AND RELATED WORK

In this section we present background and related work for survival anal-

ysis and multidimensional clustering, as well as the evaluation metrics used for

predictive modeling.

2.1 Survival Analysis

Survival analysis refers to the methods for analyzing data where the out-

come variable is the time-to-event. How much time a subject in the dataset remains

in a study depends on the outcome (i.e. the event) under consideration. When the

outcome is unknown, either because the starting point is not known and/or the

event has not yet occurred as of the last follow up time, the outcome is said to be

censored and is denoted by a flag, the censored status. One common reason why

the event has not yet occurred for a large fraction of the subjects is because they

may not have remained under study before having experienced the event. If the

follow up time ends before having experienced the event, the time until the event

occurs (ie. event time) is said to be right-censored. To simplify the discussion

throughout the text we will use censored to refer to right-censored also.

2.1.1 Nomograms

For oropharyngeal cancer outcome prediction, as in many other medical

fields, nomograms are routinely used and widely accepted as support tools. Nomo-
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Figure 2.1: Nomogram example

grams are commonly used to estimate a survival probability for a patient of some

outcome at a specific cutoff time and are derived as a visual aid from some model.

Recently, online systems have been developed for clinical use to compute survival

probablity based on nomograms created offline [9]. A nomogram from this work

is shown in Figure 2.1. Additionally, they have created an online calculator for

prognosis.

2.1.2 Survival Curves

A way to express the cumulative risk of an individual is through a sur-

vival function [10]. A widely used statistic to estimate the survival function is the

Kaplan-Meier (KM) estimator. KM curves are non parametric as the procedure to
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Figure 2.2: Kaplan Meier (KM) example with 2 groups. [11]

produce the curves makes no assumption about the shape of the underlying sur-

vival curve. Construction of the KM curves consist of using the event times where

the event occurs (uncensored samples) such that at every point that it occurs it con-

siders the previous survival probability and adjusts it to account for the outcomes

at the event time and any censored outcomes since the last event time. Figure 2.2

shows an example of a curve with 2 groups. In this manner, the curves contain

some information relating to the censored samples since these at least tell us that

the event for these samples did not happen at least up to the last follow up time.

KM estimators are limited in its ability to estimate survival adjusted for covariates.

Another way to express the same information but in terms of the risk’s rate

of change is through the hazard function. If we let S(t) and h(t), denote the survival

function and hazard function respectively then their relationship can be expressed
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with

h(t) =
dlog(S(t))

d(t)

Cox proportional hazards (Cox) regression models allows us to have simul-

taneous estimates in light of multiple covariates. Proportional hazards refers to the

hazard ratio not changing over time. The Cox model can be expressed as:

loghi(t) = α(t) + β1xi1 + β2xi2 + ⋅ ⋅ ⋅ + βkxik

i is the ith observation while x are the covariates and β are the corresponding coef-

ficients. The baseline hazard function α(t) in this model remains unspecified. As

there are no constraints on the form that the baseline hazard can take and it’s a

linear combination of the covariates, it is a semi-parametric model [12].

2.1.3 Martingale Residuals

Martingale Residuals are defined as follows:

Mi(t) = Ni(t) − ∫
t

0
Yi(s)e

β′Zi(s)dΛo(s)

Ni(t) indicates the number of observed events at time t for subject. Yi(t) is

a 0-1 process indicating whether the ith subject is a risk at time t, is a vector of

regression coefficients, Zi(t) is a p dimensional vector of covariate processes, and

Ao is the baseline cumulative hazard function [7]. Each subject is associated with a

martingale residual regardless of it’s event status.
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Martingale residuals may be interpreted as a measure of excess of deaths.

Moreover in [7] they explored using these residuals as their dependent and em-

pirically assessed viability on classification and regression. Residuals are bounded

between −∞ and +1.

2.2 Multidimensional Clustering

There are three general types of machine learning algorithms: 1) supervised

learning; 2) unsupervised learning and 3) reinforcement learning. They are essen-

tially classified on the basis of desired outcome of the algorithm [13], [14]. In su-

pervised learning algorithms, a labeled set of training data or examples is used

in order to classify a categorical variable, by probability or category, or predict

some continuous variable. In supervised learning there are the more traditional

statistical approaches such as for example Linear Regression, Naive Bayes, and

Logistic Regression, and common machine learning ones such as for example De-

cision Trees, Random Forest, Support Vector Machines (SVM), and artificial neural

networks (ANN).

In unsupervised learning, given a set of examples where no labels are pro-

vided the goal is to find the pattern or discover groups that are similar in some

respect which can serve to summarize or identify some underlying salient charac-

teristic. Here we come across the challenge of being able to define the similarity

among samples (eg. patients, points, etc.) in a meaningful manner. To this extent

we should first define the type of data for the features under consideration. The
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measuring scale types are termed nominal, ordinal, interval and ratio. These are

defined with respect to the properties of numbers that correspond to the under-

lying properties of the attribute. The types mentioned previously are in order of

increasing number of valid operations. Nominal has a equality operation, ordinal

also has valid greater or less than operation, interval also has valid addition and

subtraction operations, and finally ratio also has valid multiplication and division

operations. Nominal and ordinal are referred to as categorical whereas interval

and ratio are considered as numeric. Further we assess the value type, discrete, or

continuous. When a feature takes a finite number of values or countably infinite

number of values it is considered discrete, whereas, a continuous variable has real

number values. For the purpose of defining similarities, the more relevant ones

are the distinction between categorical (specially nominal) and numeric as the def-

initions are more sensible depending on these types.

Common dissimilarities for numeric types are minkowski (eg. euclidean,

manhattan), cosine, mahalonobis, etc., and as for dissimilarities for categorical

types there is hamming, jaccard, etc. Euclidean and manhattan belong to the more

general Lp-metric with p=2 and p=1 respectively. Hamming is well suited for cat-

egoricals where the measure is the average of the number of features that agree.

Jaccard may be well suited for binary data where it is defined as 1 minus the size

of intersection over the size of the union. The mahalanobis distance is well suited

for multivariate normal and elliptic distributions with fixed shape but varying lo-

cation [15]. Cosine similarity does not consider the magnitude of the feature vec-
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tors but rather the angle between the feature vectors of two samples. More recent

work on other similarities for numeric variables is the broad area of metric learn-

ing where the goal is to ”adapt some pairwise real-valued metric function” [16]

such that the features may not all contribute in equal parts.

From a broader perspective, the outline of unsupervised learning can be

categorized into two groups, association, and clustering. Here we sketch some of

the more relevant outline to the context of the work considered here:

• Clustering = {Partitional, Hierarchical}. Clustering analysis is a type of

unsupervised learning, where the goal is to find meaningful and or useful

groups in the data [17]. Survey of clustering algorithms can be found in [18]

and of clustering in high-dimensional data in [19]. Partitional is the more

specific approach of being able to partition the space into mutually disjoint

set, even if probabilistically. Hierarchical likewise can partition the space at a

specific point of the hierarchy but the goal is to create a hierarchical structure

at varying levels of the dissimilarity used to compare the pair of samples or

points.

– Partitional = {Graph, Density, Relocation}. Density approaches are con-

cerned with primarily clustering points that are close to each other. The

characterizing approach for density based is DBSCAN and it relies on

two parameters, the min. number of points that need to be together to

be considered a cluster and another parameter that indicates how far

are two points close enough such that they are even considered as part
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of a cluster. It also doesn’t exhaustively partition the space such that

some points are not assigned a particular label. Graph based clustering

is an extensive area that partitions based on comparing a set of graphs

or clustering nodes and edges of a graph.

* Relocation = {k-Centroids, Probabilistic}. Relocation approach rely

on iterative approaches, where the cluster grouping changes in each

iteration until it converges. Probabilistic approach as the name im-

plies, give probabilities of belonging to one class or the other.

⋅ k-Centroids = {k-medians,k-means,k-medoids,k-modes}. De-

scribed further in section 2.2.1.

– Hierarchical = {Divisive, Agglomerative}. Whereas agglomerative com-

bines the samples into different clusters at different dissimilarity levels,

until a single cluster remains, divisive starts with a single cluster and

breaks them down at every level until every sample is its own cluster.

In semi-supervised learning, the goal is the same as supervised learning, ex-

cept we have many unknown/unlabeled outcomes to consider. This is why meth-

ods like Cox would be in such a category.

2.2.1 K-Centroids Clustering

If we generalize k-means and express it as a k-centroids clustering [20] prob-

lem then we consider the following approach. An iterative approach to perform-

ing k-centroids is to initially set k samples as the initial cluster centers and identify
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them with an arbitrary label (i.e. initial “centroids”). Then the samples are asso-

ciated to it’s nearest cluster as established by the dissimilarity, eg. Euclidean for

k-means and Manhattan for k-medians. After each iteration the centroids for each

cluster are re-computed given some method, eg. mean for k-means, median for k-

median, and modes for k-modes. A similar approach is used for k-medoids except

it may use many dissimilarity measures but is further constrained by requiring to

select an existing sample as cluster centroids at every iteration, although this may

be suitable depending on the context. Eventually for these methods the iterations

converge locally and these are ultimately the cluster labels assigned to the samples.

Given the total number of possible partitions (or combinations of clusters) a global

optimum solution is NP-hard (eg. k-median and k-means) [21], [22], which is why

the previously described iterative solutions have been proposed with convergence

guarantees. While these may find only local minima, in practice these methods

have proven very effective [23]. These partitioning clustering techniques are very

popular, conceptually well understood, and with a solid statistical basis [21], [22],

[24].

The clustering method applied in Chapter 3 is k-medians [22]. There we

decided to use k-medians given that many of the features are categorical, and the

use of the median over the mean (as in k-means) is more robust to outliers [22].

Further, in order to reduce the effect of the starting seeds selection and avoid local

minima, we use consensus clustering [25] as further described in section 2.2.2 to

run k-medians 1000 times with different seeds and use kmeans++ initialization, in
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order to then find consensus among the different iterations. kmeans++ initializa-

tion finds initial cluster centers that more likely to be far from each other.

2.2.2 Ensemble Clustering

Ensemble clustering has shown to be an attractive option in order to in-

crease the robustness and effectiveness of clustering to capture any underlying

structure [26]. These structures are not known beforehand, in general, and select-

ing appropriate parameters for the clustering algorithms that additionally may be

sensitive to initialization (as mentioned with k-centroids) is not trivial. Addition-

ally, a common problem is to identify how many groups to partition the data in.

Methods like DBSCAN have two parameters that can considerably affect the struc-

tures that are captured, and moreover may not exhaustively partition the space. As

can be seen, for each clustering method, there is an additional potential challenge

of selecting the appropriate parameters. Ensemble clustering aims, and has been

shown to successfully achieve improved results over single clusterings.

In order to provide evidence of cluster stability regardless of the starting

seed such as to reduce the effect of the local minima, one approach was consensus

clustering [25] which attempts to find consensus among different clustering itera-

tions. It is an approach that is agnostic to the clustering method and can therefore

be leveraged by any method that does not produce a global solution to clustering.

It first restarts the iteration at different starting locations, then samples without re-

placement [considering the entire dataset at each iteration] in order to ultimately



www.manaraa.com

16

formulate a co-association matrix, or consensus matrix. The cells of this matrix

correspond to the pairwise agreement of cluster assignments, normalized over the

number of times the samples were considered. It is ultimately hierarchically clus-

tered to provide the actual clustering labels. Visualization of the consensus matrix

is the initial aid in considering the stability while providing numerical stability

indices such as a cluster-consensus and item-consensus matrix. The consensus

matrix is defined as:

M(i, j) =
∑h M(h)

(i, j)

∑h I(h)(i, j)

Where h is the h’th iteration of the chosen clustering algorithm. I and M are N x N

matrices. M is the connectivity matrix where a cell is 1 if pair (i,j) appear together, 0

otherwise. And I is the indicator matrix where a cell is 1 if pair (i,j) are sampled for

an iteration, 0 otherwise.Hierarchical clustering [23] is then used on the consensus

matrix to extract the clusters.

A stability measure for cluster consensus is defined as

m(k) =
1

Nk(Nk − 1)/2
∑

i,j∈Ik,i<j
M(i, j)

and more specifically, the item consensus is defined as

mi(k) =
1

Nk − 1{ei ∈ Ik}
∑

j∈Ik,j≠i
M(i, j)

where k is the cluster id, ei is the ith sample in the dataset, Ik is the set of items



www.manaraa.com

17

belonging to cluster k, and Nk refers to the number of items in cluster k. Simi-

larly other approaches that rely on the co-association matrix are [27]–[30] and re-

cently [31] proposes an objective function that simultaneously decreases the time

complexity using spectral clustering on the co-association matrix.

Further work in ensemble clustering or diversity ensemble clustering ex-

pands on the diversity of clusterings by including a variety of clustering algo-

rithms. Ensemble clustering varies the clustering to be ensembled in various ways

such as by sampling of the data, as with the previous discussed consensus cluster-

ing, varying the construction of the consensus matrix (termed similarity matrix),

and the consensus function to determine the clustering, etc.. Many options [26]

like simple majority voting, hierarchical clustering, k-modes, CSPA and LCE, etc

provide the consensus objectives of determining the final clustering for some k.

Furthermore, methods to derive a clustering that spans over multiple k have been

explored such as the diceR [32] implementation where statistical transformations

on the ensemble clusters is done.

2.3 Ensemble Methods

Ensemble methods can combine multiple base classifiers in order to get im-

proved performance such as accuracy mainly by reducing the overall variance (but

may also help in reducing bias) relative to any specific base classifier [33]. These

multiple base classifiers can result after multiple resamplings of the training data,

subsetting of the features considered, manipulating the outcome (eg. multiple dif-
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ferent binnings), or changing a methods parameters. A naive approach to combin-

ing the multiple prediction from these classifiers is to average the predictions. Two

conditions are necessary for an ensemble method to improve over base classifiers.

1) They should be independent of each other. Intuitively if all the classifiers are the

same then as expected the performance will be the same. 2) Classifiers should be

better than random guessing.

In the context of ensemble methods, two common techniques are used, bag-

ging and boosting. Bagging, also known as Bootstrap AGGregating, samples with

replacement up to the size of the dataset from a uniform distribution. After train-

ing k numbers of bootstramp samples, new instances are assigned a label based on

some method like majority voting. Random Forests uses this idea and additionally

considers a small subset of features at each internal node for the splitting criterion.

Boosting, unlike bagging, aims to focus on misclassified samples at every re-

sampling or iteration such that either these have a higher probability of being sam-

pled or it biases the classifiers or models being considered to increasingly weight

them. Varying implementation of boosting have focused on modifying how to

weight the samples or inform the distribution for sampling, and/or how the pre-

dictions among all these classifiers are combined.

Gradient boosting is an ensemble method that incorporates multiple weak

learners in a sequential manner, using the previous step’s more mispredicted sam-

ples into the next weak learner (such as Decision Trees with a single internal node,

also known as decision stumps). It has been shown to be a powerful tool in
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ML [34]. This approach allows us to capture the relative influence of features.

This relative influence is a measure of how much the features explain when they

are used in the trees. They are defined as follows:

Influencej =
1

M

M

∑
i=1

Influencej(Ti)

Where j refers to the variable , M refers to the numbers of times this variable is

considered in a tree. And Influencej(Ti) is defined as follows:

Influencej(T ) =
L−1

∑
i=1

I2i1(Si = j)

Where I2 is the empirical squared improvement. Si is the current splitting variable

and L is the number of trees.

2.4 Machine Learning in Survival Analysis

Machine learning is not new to cancer research. Numerous machine learn-

ing (ML) methods have been adapted for survival analysis, prognosis, and pre-

diction [35]–[37]. Artificial neural networks (ANNs) and decision trees (DTs) have

been used in cancer detection and diagnosis for over 30 years [38]–[40] and most

recently random survival forests [41]. Initially, machine learning methods were

used to identify, classify, detect, or distinguish tumors and other malignancies. In

other words machine learning was primarily used as an aid to cancer diagnosis

and detection [42]. More recently, cancer researchers have applied machine learn-
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ing towards cancer prediction and prognosis.

2.4.1 Inverse Proportional Censor Weighting (IPCW)

IPCW incorporates censored samples such that uncensored samples are weighted

in a manner that reflects the amount of censored samples that they ’shadow’ (ie.

that have occurred prior to event time). Furthermore, a recent approach has shown

how to incorporate IPCW unto multiple modeling methods [43].

2.4.2 Clustering in Survival Analysis

Clustering approaches specific in the context of leveraging right-censored

outcomes have been previously considered in the literature. In [44], in the context

of a gene dataset, the outcome information is considered by computing the uni-

variate Cox score for all potentially relevant features, and then selected the top k of

them as input to a nearest shrunken centroid clustering method. This method uses

the Cox score for feature selection but performs clustering using equal weights. In

our case, supervised scaling provides a mean to weight the features according to a

particular outcome. A weighted approach has been also proposed in [45]. In this

work, univariate Cox score is assessed for each feature, the score is then ordered,

and ultimately the k largest features are selected. A weighted sparse clustering

maximizes a weighted between-cluster sum of squares. This work uses the cen-

sored outcome directly which makes less effective for largely censored data as the

one used in this study. In [46], the area under the curve between survival curves

is considered as a measure of dissimilarity. The samples are initially grouped by
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considering all possible combinations of the features being considered. KM curves

are formed by the groupings, the area between the curves would be the measure

of dissimilarity and hierarchical clustering is applied over these dissimilarity val-

ues. In this study the number of cases considered was 110k and 4 factors. Given

our vastly smaller sample size and the consideration of many more feature com-

binations, the KM curves would need to be initially constructed with very few

samples, where most would be censored, such that the curves and by extension

the area between the curves would not be meaningful.

Previous methods in the context of survival time and gene expression, have

proposed approaches that enable dimensionality reduction in a high dimensional

space in order to ultimately improve prognosis, by first allowing dimensionality

reduction to be informed to some degree by the response of interest. In Supervised

Principal Components [44] (Bair’s SPC) this approach first determines a univariate

cox score threshold and keeps all the features above that threshold. This thresh-

old is determined from selecting the greatest χ2-statistic determined from cross-

validation of the training set. Then PCA is done on the training to ultimately fit a

Cox model on the first principal components. To predict for a test set, the princi-

pal component for the test are first obtained by the proposed method. Empirical

results show that Bair’s SPC is more effective in reducing dimensionality with less

error in survival time prediction [47].

Another approach is a Supervised Wavelet [48] method for classification

and is similar to Bair’s PC in that it first determines the features that are related to
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the outcome by selecting the top features based on the q value of a t test. It then

performs PCA and uses the components to fit an SVM classifier for the event at

a time cutoff. The unappealing component of these approaches however is their

difficulty in identifying a clinically salient interpretation of any underlying char-

acteristic. It is for this reason that we do not compare against these in this initial

work. That is to say, one of the key driving motivations is to be able to create or

maintain interpretable categorizations while reducing the dimensionality which in

turn, and as we show empirically, may and does, improve prognosis.

2.5 Evaluation Metrics

We consider the traditional measures for performance evaluation of sur-

vival prediction models [49]:

C-index. The C-index (i.e. probability of concordance) is a unitless quanti-

tive measure of the discriminative strength of a model. The C-index is identical to

the area under ROC for binary outcomes [50]. It is the proportion of evaluable pre-

dicted pairs with the right survival order over all evaluable pairs. The evaluability

of the pairs is determined from the known censored status. (Censored, Censored)

is not evaluable, (Censored, Uncensored) is only evaluable if censored event time

is greater than the uncensored known time [51].

Calibration. Calibration index is considered an important validation. In

the guidelines documentation, for example, the calibration was indicated as part

of required metrics to report in any approach [8]. Moreover, it is also given in the
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most recent related work [9] in the form of a calibration plot. The purpose is to

establish agreement between the number of individuals that are predicted with a

certain probability and the actual proportion of individuals [52].

Brier. This measure serves as an indication of overall performance. It is a

quadratic scoring rule that ranges from a very informative model at 0 to 0.25 for a

non informative model when the probability for the event is 50% [49]. For survival

probabilities we can use a weight function to account for the censored samples [52].

ROC. The Receiver Operating Characteristic (ROC) curve plots sensitivity

against specificity for consecutive cutoffs of the survival probability.

Log Rank Test. The log rank test or chi-square statistic allows us to compare

n KM curves. The p-value associated compares against the null hypothesis that

no curve is different (the null is a chi-square distribution with n - 1 degrees of

freedom). This p-value is displayed on the KM plots.

AIC [53] and AICc [54]. AIC is a unitless quantity that can be used to com-

pare fits between different parametric models using the same data. It estimates

the Kullback Leibler divergence which means lower values are better for AIC.

AIC = 2p − 2ln(L̂)

AICc was used to overcome overfitting due to small sample size and its formula is

given by: AICc = AIC +
2p2+2p
n−p−1

L̂ is the model evaluated at the most likely set of parameters, n is the number of

samples, and p is the number of estimated parameters.

An AIC value of +3 is roughly considered to be a better model.
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Log-Likelihood Ratio Test (LRT). The ratio between the log-likelihood of

the simpler model to the model with more parameters [55]. The anova.Cox [56]

function was used for the test.

LRT = −2loge(
Lnull(θ̂)

Lalternative(θ̂)
)

The test statistic approximates a chi-squared random variable with degrees of free-

dom equal to the difference in the number of parameters of the null vs alternative

model.

Adjusted Rand Index [57]. This index measures the agreement for every

pair between the labels assigned by the AJCC stage and the labels of the cluster.

The adjusted refers to a correction for chance assignment.
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CHAPTER 3
SUPERVISED SCALED CLUSTERING

3.1 Introduction

In this chapter the goal of the work is to identify and exploit any underlying

latent characteristics that may help stratify the feature space meaningfully towards

some outcome. The proposed approach combines supervised and unsupervised

methods such that ultimately clustering can be used to improve prediction of our

outcomes of interest in the context of right-censored oropharyngeal head and neck

cancer data. Since clustering is agnostic to the outcome, we first transform our

feature space in order to relate the discovery towards the outcome. To achieve this

we first create a proxy dependent variable, the martingale residuals, then train a

supervised model (such as linear regression) and ultimately use it’s fitted feature

coefficients to scale the feature space towards the outcome. We evaluate the result-

ing groups through model comparisons of using its group label as a feature in a

Cox Proportional Hazards (Cox) model considering AIC and LRT, and additionally

by evaluating KM curves. Finally, we further evaluate the predictive performance

against a common technique in survival analysis, rsf, and other Cox models with

varying features. We compare these using the metrics of AUC, Brier, C-Index and

calibration.

To summarize, the aims of this chapter are as follows: 1) incorporate out-

come information to influence cluster analysis; 2) identify discriminative clusters
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using patient characteristics available at the time of diagnosis and radiomic sig-

natures; 3) use the cluster labels to stratify the patients and generate KM curves

for each cluster, and compare to AJCC stage; and 4) evaluate the predictive perfor-

mance of including the cluster label as a feature in a Cox model for OS and RFS

outcomes.

3.2 Methods

All analyses were conducted using R version 3.4.1 (R Foundation for Statis-

tical Computing, Vienna, Austria). All statistical tests are two-sided with statistical

significance defined as a p¡ 0.05.

3.2.1 Data

The dataset consists of 644 of oropharyngeal cancer (OPC) patients who

were treated at MD Anderson Cancer Center between the periods of (2005-2013).

Following IRB approval, clinical features including age at diagnosis, sex, ethnicity,

HPV status, smoking status and frequency, subsite within the oropharynx, T cat-

egory, N category, therapeutic combination and AJCC stage (7th and 8th edition)

were extracted from electronic medical records. Table 3.1 shows the demographics

of patients for the clinical features and survival outcomes considered. Response

variable units are given in months and the breakdown is given on Tables 3.2 for

the response distribution and censored proportions.

A more detailed description of these data can be found in [58].
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3.2.2 Data Preprocessing

Missing Data was imputed using the Multivariate Imputation by Chained

Equations (MICE) approach [59]. This is a standard widely used approach in sur-

vival analysis and the one used here. Imputation of each validation sample was

performed individually and only considering training after the training had been

imputed, per fold. Features used in clustering and training with missing values

(radiomic features and Smoking Packs Per Year) that were ultimately imputed

used Predictive Mean Matching with k = 5. As we are comparing against AJCC

stage, the 2 patients with missing values for it were discarded. The 2 patients with

missing age were never considered as patients with missing response (2 for OS, 6

for RFS) were discarded and overlapped with the missing age.

Min-Max normalization was used to standardize each attribute’s range into

the interval [0,1]. This was done as a pre-processing step for feature selection,

model training, and clustering. This prevents features from dominating the dis-

similarity value (e.g. Lp-norm) when clustering which in our case was Manhattan

distance (L1-norm).

Out of the initial 3831 radiomic features, we removed those with zero vari-

ance and those with a correlation above 99%. Previous studies have identified

tumor volume and intensity as relevant features for local control [60]. To further

reduce redundancy, we also removed any radiomic features that were highly cor-

related (> 80%) to F25.ShapeVolume and F29.IntensityDirectGlobalMean. Finally

the RReliefF feature selector was applied over the remaining 542 radiomic features.
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The Relief family of algorithms calculate a feature importance value for each fea-

ture by calculating the distance between pairs of near observations which fall in

the same and different classes [61]. Features with more similar values for obser-

vations having the same class get higher importance values and likewise features

with more different values for observations not having the same class get higher

importance values. RReliefF calculates feature importance based on a continuous

outcome, in this case, the martingale residuals resulting from using a Cox model

considering the clinical features. It achieves this by probabilistically determining

whether the instances are different and is based on the relative difference between

the outcomes. Feature importance for the Relief algorithms in general is expressed

by the following equation:

W [A] = P (diff. value of A∣nearest inst. from diff. class) −

P (diff. value of A∣nearest inst. from same class)

The radiomic signature of 4 features, described later in Results, obtained through

this feature selection was then included together with the clinical features for clus-

tering. Given our evaluation of using the Cox model to assess the ultimate cluster-

ing, and comparing against this model using the original features, a reduced space

of the entire radiomic feature space is necessary as otherwise there would be too

many parameters for the Cox model to reasonably estimate.
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3.2.3 Novel Supervised Scaling for Clustering

Clustering without any considerations can certainly capture latent charac-

teristics, but nevertheless these may not be related to the outcome of interest.

The challenge then is to incorporate the outcome information in a mean-

ingful way that can help identify discriminative groups for a particular outcome.

Previous studies have explored using residuals as the dependent variable and em-

pirically assessed viability on classification and regression [7]. For largely censored

samples, the use of residuals has the advantage that each subject would be associ-

ated with a residual regardless of it’s event status. This allows us to incorporate all

data available into the training process. Martingale residuals [7] in particular can

be interpreted as a measure of excess of deaths.

The Supervised Scaling processing pipeline is illustrated in Figure 3.1. First,

a null Cox model is trained for a particular outcome in order to obtain a proxy de-

pendent variable, the martingale residuals (1). Then, these residuals are used to

train a regression model such that the fitted coefficients are used to scale the fea-

ture space (2). This effectively produce features weights associated to the outcome.

Finally, the scaled feature space is clustered using a machine learning algorithm,

e.g. consensus clustering over 1000 runs of k-medians (3). Validation sample as-

signment of cluster labels is done by computing the Manhattan distance to the cen-

troids of the formed clusters and assigning the label of the closest centroid. Cluster

assignment per fold is arbitrary but may relate to the same underlying characteris-

tic. Therefore, in order to visualize clusters and assess the cluster label assignment
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Figure 3.1: Supervised Scaled Clustering (SSC) approach. A null Cox model is
trained in order to obtain a proxy dependent variable (1), e.g. martingale residu-
als. The fitted coefficients obtained from training a supervised learning method,
e.g. linear regression, are used to scale our feature space (2). A clustering method
is applied over the scaled feature space (3). The clustering implementation here
shown is consensus clustering over 1k runs of the k-median (k=2) clustering
method using different initial seeds and Manhattan distance as the dissimilarity
measure.

across folds, clusters at every fold are matched to fold 1 (arbitrarily selected). That

is, if the training labels at a fold correspond with the training labels at fold 1 more

than they don’t then the labels are kept the same, otherwise they are inverted. The

validation samples are then assigned to these clusters. Given that the labels are

arbitrary, this would just provide consistency of label assignment.

Through the remainder of this paper, scaling or scaled refers to applying

these feature weights in addition to first standardizing the features with min max

normalization.

Once we have clustered the data with Supervised Scaling we proceed to use

these cluster labels as a feature in the prediction method.
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3.2.4 Survival Models

Since Cox proportional hazards (Cox) models are generally used to model

survival and meaningful comparisons among models with various metrics can be

made, we construct several Cox models using different features, including the clus-

ter label where indicated, as described below.

• AJCC Only - Only 4 AJCC categories are considered in the model.

• [Sc.] Cluster Only - only the cluster label as a feature after standardizing and

scaling of the feature space.

• [Stand.] Cluster Only - only the cluster label as a feature without scaling the

feature space (only standardization).

• Only AJCC & [Sc.] Cluster - Only 4 AJCC categories and scaled feature space

cluster labels are considered in the model.

• Clin. Only - only the clinical features.

• Clin & X - Clinical features and, in addition, what X describes (eg. Rad. for the

4 radiomic feature signature, [SC.] Cluster Only for the scaled feature space

cluster labels, etc).

In addition to these Cox models, we also evaluated Random Survival Forest

(rsf) implemented in the randomForestSRC(v2.7) package [62]. We grow 100 trees,

choosing the default
√
p of the features, where p is the number of features. These

trees consider the clinical features and the radiomic signatures.
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Median or 

Frequency

(25th, 75th 

centiles) or 

Percent

Missing 

Frequency 

(Percent)

Female 0

No 566 87.9

Yes 78 12.1

Age 58 (52.3, 65.3) 2 (0.3)

HPV Status 0

Negative 50 7.8

Positive 393 61

Unknown 201 31.2

T Category 0

T1,T2,Tis,Tx 410 63.7

T3,T4 234 36.3

N Category 0

N0, N1 341 53

N2, N3 303 47

Smoking Status 0

Current 139 21.6

Former 238 37

Never 267 41.5

Smoking Pack Per Year (Current) 35 (20, 50) 13 (2)

Tumor Subsite 0

BOT 328 50.9

Tonsil 259 40.2

GPS, NOS, Soft Palate 57 8.9

White/Caucasian 0

No 57 8.9

Yes 587 91.1

Therapeutic 0

CC 340 52.8

IC_and_CC 160 24.8

IC_and_Radiation 61 9.5

Radiation 83 12.9

F25.ShapeVolume 7.7 (3.8, 14.8) 86 (13.4)

F29.IntensityDirectLocalRangeMax 1136 (1103, 1195.8) 86 (13.4)

F5.IntensityDirectGlobalMax 1199 (1165, 1341.8) 86 (13.4)

F29.IntensityDirectGlobalMax 1190.5 (1152, 1369.5) 86 (13.4)

AJCC 8th 2 (0.3)

I 238 37

II 109 16.9

III 74 11.5

IV 221 34.3

Table 3.1: Characteristics of population. Following AJCC standard
definitions, T1 - T4: ”Size and/or extent of the primary tumor”,
Tx: ”Primary tumor cannot be evaluated”, Tis: ”Early cancer that
has not spread to neighboring tissue”, and N0-N4: ”Involvement
of regional lymph nodes”. BOT: Base of Tongue. NOS: Not oth-
erwise specified. GPS: Glossopharyngeal Sulcus. CC: Concurrent
Chemotherapy. IC: Induction Chemotherapy.
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Median or 

Frequency

(25th, 75th 

centiles) or 

Percent

Missing 

Frequency 

(Percent)

Recurrence Free Survival 6 (0.9)

Survival Time 61.1 (39.7, 96.1)

Censor Status

Censored 520 80.7

Uncensored 118 18.3

Event Time (Uncensored) 17.5 (9.7, 37)

Overall Survival 2 (0.3)

Survival Time 65.3 (45.6, 98.4)

Censor Status

Censored 510 79.5

Uncensored 132 20.5

Event Time (Uncensored) 35.3 (16.5, 64.8)

Table 3.2: Outcomes summary
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3.3 Results

Two clusters were identified and evaluated using 10-fold cross validation

for OS and RFS.

Radiomic Feature Selection

The top 4 radiomic features selected from RReliefF for both OS and also for

RFS were:

• F25.ShapeVolume

• F29.IntensityDirectLocalRangeMax

• F5.IntensityDirectGlobalMax

• F29.IntensityDirectGlobalMax

Clustering with Supervised Scaling

Figure 3.2 shows the KM curves for the cluster assignments over the vali-

dation samples across folds for the OS outcome.

The KM curves for the two clusters differ significantly (p-val<0.0001). They

are also significantly different (p-val< 0.01) for RFS. The demographic breakdown

per cluster is given in Table 3.3 for OS and Table 3.4 for RFS. Albeit omitted for

conciseness of gures and tables, for standardization only, the p-values associated

to the KM curve comparison were not significant for either outcome.
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Comparison with AJCC Staging System (8th edition)

We compare the KM plots for to AJCC stage against the clustering label

results mentioned previously as indicated in the same Figure 3.2. To aid this com-

parison, Stages I and II were grouped together, likewise Stages III and IV were

grouped together. The Adjusted Rand Index comparing the 2 clusters in these fig-

ures for OS vs the AJCC groupings is 0.193, and 0.104 for RFS. When comparing

the cluster labels vs all the 4 stages of AJCC considering the unknown HPV, it is

0.028 for OS and 0.023 for RFS. Given that this pairwise agreement measure is low,

but we know that both (1) AJCC is clinically informative and moreover (2) that the

clusters have a strong discrimination on the outcome, in the model comparison we

compare how adding both the label and the AJCC status affects the model.

Model Comparisons and Prediction

We compare how meaningfully the cluster labels are by quantitatively as-

sessing them (AIC/AICc and LRT) as an additional feature in the Cox model as

shown in Table 3.5. We consider the entire dataset and the cluster labels are those

assigned to the validation samples at every fold.

This table compares against two reduced models. To display results in an

intuitive manner, AIC and AICc values are the negated difference to these reduced

models such that negative values indicate a worse model and positive values a

better one relative to the reduced models. Table 3.5 compares against the these

reduced models, Vs Clinical considers a Cox model with only the clinical features
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Figure 3.2: OS outcome considering known HPV Status. AJCC 8th KM curves are
formed by aggregating AJCC stage categories as indicated by legend (Stage I and II vs
Stage III and IV). The clustering of validation samples across folds likewise is only for
known HPV Status in this comparison.
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and Vs NULL against the null Cox model (Cox model with no covariates). As the

clinical features are known features that are relevant to the diagnosis and progno-

sis, we consider this model as a baseline. Moreover, since we know that AJCC is a

clinically relevant categorization we consider it as a feature against both reduced

models and compare it against our quantitative approach to categorization.

When considering standardization ([Stand.]) only cluster, LRT and AIC in-

dicate that these labels are not informative as features against either of the reduced

models.

The models with overall better AICs ( > 3) vs the clinical model were Clin &

Rad. and the models using scaled clusters ([Sc.] Cluster) as features. This is expect-

edly moreso against the reduced null model. For the models with the [Sc.] Cluster

as feature, the 95% CI for the estimated hazard ratio of the non reference label was

[2.22,4.66] for OS and [0.30,0.66] for RFS. Similarly, when considering the clinical

features and the cluster label, the interval for the cluster label was [1.64,3.64] for

OS and [0.34,0.78] for RFS. All hazard ratios for clusters with standardized only

are non signifcant. As expected from the fact that the AJCC labels dont match with

the cluster labels yet both could be informative, when comparing against the null

model we note that the inclusion of both AJCC and the [Sc.] Cluster reflects a bet-

ter model with AIC rather than either [SC.] Cluster or AJCC alone. However, once

we control for the clinical variables, AJCC doesnt indicate any significant improve-

ment. Additionally, even when controlling for AJCC and Clinical, the [Sc.] Cluster

feature still provides significant hazard ratios for the non reference label, which
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are [2.01,3.59] for OS and [0.35,0.80] for RFS.

Table 3.6 shows the main model prediction evaluation using four of met-

rics described in the Evaluation Metrics section. With our proposed method, when

evaluating the labels as a feature in Clin.&[Sc.] Cluster, for OS we see better values

for AUC, Brier and C-Index, and a well calibrated model. As for RFS, using the 4

radiomic signature features shows the better AUC, Brier and C Index despite not

being as well calibrated as the other models Clin.&[Sc.]. Clusters with standardiza-

tion only, as expected from AIC and LRT evaluation, considerably underperform

against the radiomics or scaled clusters.
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Median or 

Frequency

(25th, 75th 

centiles) or 

Percent

Missing 

Frequency 

(Percent)

Median or 

Frequency

(25th, 75th 

centiles) or 

Percent

Missing 

Frequency 

(Percent)

Female 0

No 430 88.1 133 87.5

Yes 58 11.9 19 12.5

Age 0.5 (0.5, 0.7) 0.6 (0.5, 0.7) 0

HPV Status 0 0

Negative 29 5.9 21 13.8

Positive 300 61.5 91 59.9

Unknown 159 32.6 40 26.3

T Category 0 0

T1,T2,Tis,Tx 340 69.7 66 43.4

T3,T4 148 30.3 86 56.6

N Category 0 0

N0, N1 270 55.3 69 45.4

N2, N3 218 44.7 83 54.6

Smoking Status 0 0

Current 105 21.5 32 21.1

Former 178 36.5 60 39.5

Never 205 42 60 39.5

Smoking Pack Per Year (Current) 0.3 (0.2, 0.5) 10 (2) 0.3 (0.2, 0.5) 1 (0.7)

Tumor Subsite 0 0

BOT 245 50.2 82 53.9

GPS, NOS, Soft Palate 42 8.6 15 9.9

Tonsil 201 41.2 55 36.2

White/Caucasian 0 0

No 35 7.2 21 13.8

Yes 453 92.8 131 86.2

Therapeutic 0 0

CC 267 54.7 72 47.4

IC_and_CC 103 21.1 56 36.8

IC_and_Radiation 52 10.7 8 5.3

Radiation 66 13.5 16 10.5

F25.ShapeVolume 0 (0, 0.1) 64 (13.1) 0.1 (0, 0.2) 20 (13.2)

F29.IntensityDirectLocalRangeMax 0.2 (0.2, 0.2) 64 (13.1) 0.2 (0.2, 0.3) 20 (13.2)

F5.IntensityDirectGlobalMax 0 (0, 0.1) 64 (13.1) 0.2 (0.1, 0.2) 20 (13.2)

F29.IntensityDirectGlobalMax 0 (0, 0.1) 64 (13.1) 0.2 (0.1, 0.3) 20 (13.2)

AJCC 8th 0

I 197 40.4 41 27

II 82 16.8 27 17.8

III 45 9.2 29 19.1

IV 164 33.6 55 36.2

OS Survival Time 72.8 (47.8, 100.9) 0 53.7 (35.1, 78.4) 0

OS Event Time (Uncensored) 41 (18.4, 69.2) 0 28.1 (15.3, 51.3) 0

Censored/Uncensored 400/88 82/18 0 108/44 71.1/28.9 0

OS Cluster Label Breakdown

Cluster 1 Cluster 2

Table 3.3: Demographic breakdown per cluster for OS. Following AJCC standard def-
initions, T1 - T4: ”Size and/or extent of the primary tumor”, Tx: ”Primary tumor
cannot be evaluated”, Tis: ”Early cancer that has not spread to neighboring tissue”,
and N0-N4: ”Involvement of regional lymph nodes”. BOT: Base of Tongue. NOS: Not
otherwise specified. GPS: Glossopharyngeal Sulcus. CC: Concurrent Chemotherapy.
IC: Induction Chemotherapy.
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Median or 

Frequency

(25th, 75th 

centiles) or 

Percent

Missing 

Frequency 

(Percent)

Median or 

Frequency

(25th, 75th 

centiles) or 

Percent

Missing 

Frequency 

(Percent)

Female 0 0

No 366 88.6 193 86.5

Yes 47 11.4 30 13.5

Age 0.6 (0.5, 0.7) 0 0.5 (0.5, 0.7) 0

HPV Status 0 0

Negative 23 5.6 27 12.1

Positive 262 63.4 127 57

Unknown 128 31 69 30.9

T Category 0 0

T1,T2,Tis,Tx 277 67.1 127 57

T3,T4 136 32.9 96 43

N Category 0 0

N0, N1 228 55.2 108 48.4

N2, N3 185 44.8 115 51.6

Smoking Status 0 0

Current 79 19.1 57 25.6

Former 154 37.3 83 37.2

Never 180 43.6 83 37.2

Smoking Pack Per Year (Current) 0.3 (0.2, 0.5) 5 (1.2) 0.3 (0.2, 0.5) 6 (2.7)

Tumor Subsite 0 0

BOT 214 51.8 112 50.2

Tonsil 30 7.3 25 11.2

GPS, NOS, Soft Palate 169 40.9 86 38.6

White/Caucasian 0 0

No 34 8.2 21 9.4

Yes 379 91.8 202 90.6

Therapeutic 0 0

CC 223 54 114 51.1

IC_and_CC 95 23 63 28.3

IC_and_Radiation 42 10.2 18 8.1

Radiation 53 12.8 28 12.6

F25.ShapeVolume 0 (0, 0.1) 57 (13.8) 0.1 (0, 0.1) 26 (11.7)

F29.IntensityDirectLocalRangeMax 0.2 (0.2, 0.2) 57 (13.8) 0.2 (0.2, 0.3) 26 (11.7)

F5.IntensityDirectGlobalMax 0 (0, 0.1) 57 (13.8) 0 (0, 0.2) 26 (11.7)

F29.IntensityDirectGlobalMax 0 (0, 0.1) 57 (13.8) 0.1 (0, 0.2) 26 (11.7)

AJCC 8th 0 0

I 164 39.7 73 32.7

II 75 18.2 33 14.8

III 41 9.9 33 14.8

IV 133 32.2 84 37.7

RFS Survival Time 62.7 (40.8, 96.8) 0 58.9 (32.6, 94.3) 0

RFS Event Time (Uncensored) 17.4 (10.8, 39.4) 0 17.6 (8.9, 33.4) 0

Censored/Uncensored 336/77 81.4/18.6 0 182/41 81.6/18.4 0

Cluster 1 Cluster 2

RFS Cluster Label Breakdown

Table 3.4: Demographic breakdown per cluster for RFS. Following AJCC standard
definitions, T1 - T4: ”Size and/or extent of the primary tumor”, Tx: ”Primary tumor
cannot be evaluated”, Tis: ”Early cancer that has not spread to neighboring tissue”,
and N0-N4: ”Involvement of regional lymph nodes”. BOT: Base of Tongue. NOS: Not
otherwise specified. GPS: Glossopharyngeal Sulcus. CC: Concurrent Chemotherapy.
IC: Induction Chemotherapy.
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Vs Clinical OS RFS
Model AIC AICc LRT AIC AICc LRT

Clin. & Rad. +21.80 +21.35 5.36e-06 +17.82 +17.37 3.43e-05
Clin. & [Sc.] Cluster +15.60 +15.50 2.72e-05 +7.03 +6.92 2.66e-03

Clin. & [Stand.] Cluster +0.52 +0.42 1.12e-01 -1.88 -1.99 7.34e-01
Clin. & AJCC -1.01 -1.34 1.73e-01 +2.05 +1.72 4.49e-02

Clin. & AJCC & [Sc.] Cluster +13.47 +13.02 2.55e-04 +8.65 +8.19 2.26e-03
Vs NULL OS RFS

[Sc.] Cluster Only +30.69 +30.68 1.08e-08 +12.89 +12.88 1.14e-04
[Stand.] Cluster Only +1.77 +1.76 5.22e-02 -0.19 -0.20 1.79e-01

AJCC Only +11.48 +11.44 5.64e-04 +8.93 +8.89 1.88e-03
Only AJCC & [Sc.] Cluster +36.54 +36.48 4.96e-09 +19.50 +19.43 1.58e-05

Table 3.5: Model comparisons of Cox models varying the features including with and with-
out AJCC. The reduced model for Vs Clinical is the Cox model using clinical covs whereas
for Vs NULL it was the null Cox model. Models were fitted on the entire dataset and the
cluster labels (for the models the labels were used, ie. denoted by Cluster) were those as-
signed to the validation samples at every fold. AIC/AICc values are given relative to the
reduced model as the negated difference. [Stand.] Refers to min max standardization only.
[Sc.] Refers to scaling features prior to clustering.

OS
Method AUC Brier C-Index Calibration

Clin. Only 0.6029 ± 0.0299 0.1349 0.6616 ± 0.0254 12.11
Clin. & Rad. 0.6203 ± 0.0302 0.1325 0.6785 ± 0.0259 15.25

Clin. & [Sc.] Cluster 0.6335 ± 0.0298 0.1298 0.6851 ± 0.0252 13.80
Clin. & [Stand.] Cluster 0.6061 ± 0.0297 0.1344 0.6645 ± 0.0254 10.47

Random Surv Forest 0.6267 ± 0.0302 0.1338 0.6844 ± 0.0257 24.48
Clin. & AJCC 0.6056 ± 0.0299 0.1347 0.6643 ± 0.0256 17.00

Clin. & AJCC & [Sc.] Cluster 0.6359 ± 0.0298 0.1302 0.6881 ± 0.0254 26.15
RFS

Method AUC Brier C-Index Calibration
Clin. Only 0.6111 ± 0.0308 0.1378 0.6044 ± 0.0276 12.58

Clin. & Rad. 0.6639 ± 0.0302 0.1335 0.6408 ± 0.0278 25.60
Clin. & [Sc.] Cluster 0.6377 ± 0.0302 0.1354 0.617 ± 0.0274 18.39

Clin. & [Stand.] Cluster 0.6008 ± 0.0312 0.1387 0.5902 ± 0.0281 11.48
Random Surv Forest 0.6177 ± 0.0321 0.1361 0.6061 ± 0.0287 34.37

Clin. & AJCC 0.6185 ± 0.0312 0.1359 0.6103 ± 0.028 11.29
Clin. & AJCC & [Sc.] Cluster 0.6483± 0.0306 0.1340 0.6279 ± 0.0278 19.19

Table 3.6: Validation metric summary for OS and RFS outcomes. Using 10-fold cross val-
idation. Cox model was used for all methods except Random Surv Forest. Description of
methods given in the Survival Models section
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3.4 Discussion

As our driving motivation is to find discriminative groups of oropharyngeal

head and neck cancer patients, we evaluate the performance of the proposed ap-

proach (Supervised Scaled Clustering) in terms of the KM curves it generates, the

model performance under AIC and LRT metrics, and the predictive performance

in terms of AUC, C-index, Calibration, and Brier scores.

Figure 3.2 compares the KM curves for the cluster groups against the lat-

est edition of the AJCC staging (8th edition) for patients with known HPV status.

As can be seen in Figure 3.2, both AJCC staging and the proposed Supervised

Scaling, significantly discriminates w.r.t. to the patient’s time to event. Moreover,

when evaluating the predictive performance of these classification schemes, the

proposed Supervised Scaling clustering method outperfoms AJCC staging. As

can be seen in Table 3.5, the addition of AJCC staging has significant LRTs for all

comparisons except for OS when compared to the model with clinical features.

For AIC, however, including the AJCC staging only improves when compared

(−∆(AIC) > 3 ) against the null model. Compared to the Cox model with clin-

ical features only, the scaled cluster labels have high significance in LRT for the

OS outcome whereas AJCC is not significant. The AIC values for the additional

scaled cluster labels over only clinical are much greater than 3, which indicates an

improved model.

Additionally, given the low pairwise agreement between AJCC staging and

the cluster labels (rand index < 0.2), we notice that when we include both AJCC
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and the scaled cluster label, the information might be complimentary. Namely,

when compared to the null model, considering both AJCC and the scaled cluster

label, the resulting AIC shows considerably better values than either AJCC staging

or the cluster labels alone. However, once we control for all the clinical features,

we notice that including the scaled cluster labels only also shows an improvement.

These lead us to conclude that the proposed approach does indeed find a clinically

meaningful categorization, complementary to AJCC staging, that can be further

explored in future analyses.

As can be seen in Table 3.6, the cluster labels resulting from the proposed

approach (ie. [Sc.] Cluster or scaled cluster labels) shows improved performance

over AJCC staging across all metrics, except [Sc.] Cluster is only well calibrated

(Calibration ¡ 15.5) for OS, whereas Clin. & AJCC is only well calibrated for RFS.

The proposed approach summarizes a high dimensional space into a single

covariate. Machine learning approaches for feature selection identify a small sub-

set of highly predictive features given an outcome variable. For these experiments,

we use RReliefF and selected four radiomic features. When comparing the model

performance of the scaled cluster labels to the radiomic signature, we see better

AIC and LRT values for the radiomic signatures, but better values for AUC, Brier

and C-Index for the scaled clustering for the OS outcome. For OS, Clin & Rad and

Clin & [Sc.] are both well calibrated. These are encouraging results given the fact

we performed feature selection using the whole dataset (and the outcome informa-

tion) as the training set. The proposed approach generates a single covariate that
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represents the entire radiomic feature space avoiding the need to limit the number

of selected features.

Cox proportional hazard models are widely interpretable and commonly

used in the oncologic community for survival analysis. We evaluate the proposed

approach when the cluster labels are incorporated into a Cox model. However this

approach is potentially extensible to parametric approaches with minor modifica-

tions and could represent an additional step, albeit one not heavily investigated

in the current study. The utility of a future space reduction has the added value

of avoiding significant overfitting, and this also has potential applications across a

wider range of machine learning style approaches which incorporate right-censored

variables.

A further advantage of using the scaled clustering approach is that miss-

ing data can be handled without imputation nor removal by computing the dis-

tance between the patient and cluster centroids using the known available fea-

tures. However, a thorough evaluation of missing data’s effect and performance

comparison with established methods for data imputation are needed.

Clustering approaches specific in the context of leveraging right-censored

outcomes have been previously considered in the literature. In [44], for a gene

dataset, the outcome information is considered by computing the univariate Cox

score for all potentially relevant features, and then selected the top k of them as

input to a nearest shrunken centroid clustering method. This method uses the Cox

score for feature selection but performs clustering using equal weights. In our case,
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supervised scaling provides a mean to weight the features according to a particu-

lar outcome. A weighted approach has been also proposed in [45]. In this work,

univariate Cox score is assessed for each feature, the score is then ordered, and ulti-

mately the k largest features are selected. A weighted sparse clustering maximizes

a weighted between-cluster sum of squares. This work uses the censored outcome

directly which makes less effective for largely censored data as the one used in this

study. In [46], the area under the curve between survival curves is considered as

a measure of dissimilarity. The samples are initially grouped by considering all

possible combinations of the features being considered. KM curves are formed by

the groupings, the area between the curves would be the measure of dissimilarity

and hierarchical clustering is applied over these dissimilarity values. In this study

the number of cases considered was 110k and 4 factors. Given our vastly smaller

sample size and the consideration of many more feature combinations, the KM

curves would need to be initially constructed with very few samples, where most

would be censored, such that the curves and by extension the area between the

curves would not be meaningful.

For many parametric and semi parametric methods such as Cox, the amount

of features that can be considered, specially given the limitation on sample size, is

constrained despite the availability of increasing number of potentially relevant

features. A limitation for the generalization of this study is that even after vastly

reducing the feature space of potential radiomic features to four or one (the clus-

ter label), the number of features used within the Cox model exceeds the rule of



www.manaraa.com

46

thumbs of ten events per covariate in the model.

From a clinical perspective, a limitation of the current study is the dearth of

real-time collected human papillomavirus data status on historical patients with

the data set; we circumvented this by incorporating the previous corresponding

staging categories where there was uncertainty about HPV status. However it

should be noted that this is a major etiologic feature of head and neck cancers, and

necessarily meant that the robustness of our analyses which incorporated HPV

data was reduced by this. We hope in future iterations to increase the size of

our HPV data set, and include external validation in these larger data sets which

would be of significant value. We attempted to correct for this by using a rigorous

cross validation approach which we hope should demonstrate the robustness of

our findings across potentially generalizable clinical scenarios. However nonethe-

less, as with any radiomics approach, the extensibility or generalizability of our

data to other head neck cancer databases is contingent upon their similarity to the

patient characteristics, treatment profiles, and demographic information contained

herein.

A natural extension of our approach would be to use clustering as a way to

represent other high dimensional spaces related to the outcome such as genomics

and other omics spaces, and then using these labels as potentially useful features in

prognosis. Other directions for future work include further evaluation to identify

the attribute-values that characterize the clusters, and the evaluation of different

parameters or algorithms considered in the different stages of the proposed pro-
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cessing pipeline. For example, the type of model fitted that can scale the feature

space, the type of clustering and dissimilarity measures considered, and moreover,

other ways to incorporate or leverage these discriminating clusters beyond as an

additional feature used in a Cox model.
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CHAPTER 4
SUPERVISED DOMAIN CLUSTERING

4.1 Introduction

In this chapter we propose a novel approach for feature extraction through

clustering of multiple feature groupings. Similar to previously, we fit a Cox model

for the survival outcome and then use the residuals as a dependent variable. We

then identify semantically related groups of features or subspaces for the available

head and neck cancer data and compute the dissimilarity between every pair of

patients. Then we determine the most relevant dissimilarities using the relative

influence in gradient boosting on each subspace. The patients are then clustered

using the more relevant dissimilarity(ies) per subspace. The cluster labels are then

used as categorical factors to fit a Cox model.

The advantage of the proposed approach in this second chapter is three-

fold, 1) we reduce the dimensionality, 2) we maintain clinically meaningful inter-

pretability, and 3) we leverage these categorizations to improve prognosis.

4.2 Proposed Approach

Figure 4.1 illustrates the processing of the proposed approach. In order to

achieve these locally meaningful categories we should first define the domain sub-

spaces that are sensible for this domain (eg. Domain Subspace 1) which we have

and will refer to as just subspace throughout. Defining feature groups that dont

span too many features will allow the dissimilarity measures to maintain informa-
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tive value. Dissimilarity measues like euclidean, manhattan, hamming etc, can be

affected by the curse of dimensionality such that as d → ∞ the distances between

pairs are increasingly similar, which this is exacerbated when we are consider-

ing categorical features with few unique values. The previously defined domain

subspaces are then further divided by the type of data, eg. nominal, ordinal or

continuous. For each of these SS-datatypes we can then define, for each, a dissim-

ilarity or set of dissimilarities that will describe how similar patients are within

these groups (shown as data type 1, data type 2, etc). Most of time we are unsure

what the best dissimilarity measure to use is that can properly define and ulti-

mately be used to find the structures with clustering. With that in mind and as

indicated previously our approach can use a set of possible dissimilarities for each

of these SS-datatype combinations (eg. diss. 1 , diss. 2). That is you can have more

than one dissimilarity, say for example correlation and angular for SS1-numeric.

Once all the SS-datatype combinations are selected we proceed to create all the

dissimilarity matrices, which are then normalized between 0 and 1.

At this point we would like to select for each SS, the dissimilarity(ies) that

more closely approximates the change in outcome for every pair of patients. How-

ever, since the outcome is right-censored for the majority of the patients, we can

not use the time-to-event directly. In order to incorporate the outcome informa-

tion we create a proxy dependent variable using the martingale residual of a null

(considering no features) Cox model [12] .

Applying the Cox regression model to the data, we compute a residual, and
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Figure 4.1: Diagram of the proposed approach: Supervised Domain Clustering
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use the abs difference between patients as a proxy for the survival outcome.

A new training matrix is then generated by transforming the n-by-n dis-

similarity matrices into a n2-element vector representing a column of the training

matrix. The training matrix is a n2-by-(d + 1) matrix, where n is the number of

patients, and d is the number of dissimilarities considered. The extra column cor-

responds to the martingales residuals differences.

Second we run gradient boosting [63] considering the martingale residual

column as the dependent and all other columns as independent features in order to

capture the relative influence of the dissimilarities considered. In our context this

influence means how much the dissimilarities can explain the martingale residual

difference. With this method our goal is to be able to identify the most relevant

dissimilarities w.r.t. to the outcome of interest. Then for each subspace we select

the most important dissimilarities to be considered for clustering. Now that we

have determined the most important dissimilarities that are related to the outcome

of interest we proceed to find any salient structures via clustering.

To obtain the clusters for each subspace we incorporate the use of ensemble

clustering which has shown to be more robust indentifying underlying character-

ists than single algorithms. In addition to clustering on subsamples we can also

incorporate multiple clustering algorithms [18] to increase the diversity in the in-

duced partitions. Eg. Partition around Medoids (PAM) is understood to be more

robust to outliers than k-means as it selects real points to be the cluster prototype

as it iterates to convergence and as describing the final clustering. Additionally, it
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is more sensible in terms of interpreting what the clustering is capturing. Likewise

we can use Hierarchical Clustering with any of the common linkage options like

average, single and complete. Or we can use others like Ward’s which is the hier-

archical analogue of k-means but without the potential problem of having merged

clusters be less distant than the pair of clusters merged. Once these clusters are

obtained then we prune away the clusters that do not show any discriminative

capacity by assessing the Kaplan-Meier (KM) Curves. These curves incorporate

the right-censored patients and are a ubiquitous survival analysis tool that allows

for the visualization and comparison of risk stratification. For something to be

non-significant for an arbitrary number of curves means that there is no difference

among all the curves. In order to account for the multiple comparison tests being

done here, one for each subspace, we adjust the p-value considering the false dis-

covery rate. For this we use the Benjamini & Hochberg (BH) [64] method which is

a common approach that has greater power than other alternatives like Bonferroni.

Therefore our approach has two steps at which the outcome information is evalu-

ated. One by using the proxy dependent martingale residual in gradient boosting,

and secondly the log rank test in order to obtain the final clusterings per subspace.

As implied by the missing SS2 in the Cluster and Determine Final Clusterings in

the diagram, every subspace is not necessarily going to have it’s own clustering if

the clustering is not significant. These significant supervised subspace clusterings

are then deemed to form our new feature space where each subspace corresponds

to a clinically meaningful space and where the discriminative groupings can allow
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inspection of how risk is stratified. Motivating then potential further inquiry in

the domain space. When new patients are to be assigned, we suggest using the

average distance of these patients to the existing patients stratified by clusters and

selecting the smallest of these average distances to assign the label.
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4.3 Results and Discussion

In this section we present experimental results after applying the proposed

approach to head and neck cancer patient data. We first describe the dataset and

pre-processing done, then briefly summarize the metrics used for evaluation, and

finally present the results. Our experiment were run in R, version 3.4.1.

4.3.1 Dataset

The dataset consists of 525 oropharyngeal cancer (OPC) patients who were

treated at MD Anderson Cancer Center between the periods of (2005-2013). Fol-

lowing IRB approval, clinical features including age at diagnosis, sex, ethnicity,

HPV status, smoking status and frequency, subsite within the oropharynx, T cat-

egory, N category, therapeutic combination and AJCC stage (7th and 8th edition)

were extracted from electronic medical records. These clinical features are a subset

of all the available clinical features and were used as they are understood in the do-

main to be relevant features in prognosis. We limit the number of clinical features

to these 10 relevant features in head and neck cancer with the goal to compare

against highly interpretable modeling strategies for prognosis. Tabler̃effig:demo

shows a breakdown for the categorical clinical information. For continuous data:

1. Age. mean-59.14, median-58.33, 25th-52.66, 75th-65.58

2. Packs per year for current smokers. mean-38.46, median-35, 25th-20, 75th-50

Missing Data was imputed using the Multivariate Imputation by Chained

Equations (MICE) approach [59]. This is a standard widely used approach in sur-
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(%) (%)

T Category HPV Status

 T1,T2,Tis 62 Negative 9

 T3,T4 38 Positive 62

N Category Unknown 29

N0,N1 52 Tumor Subsite

N2,N3 48 BOT 54

Smoking Status  Other 9

 Current 22 Tonsil 37

 Former 36 White

 Never 42 No 10

Missing 2 Yes 90

Female Therapeutic

 No 88 CC 53

 Yes 12 IC and CC 27

Radiation 10

IC and Rad 10

Table 4.1: Breakdown of categorical
clinical data

vival analysis and the one used here. In our dataset only the number of smoking

packs per year small fraction of number of smoking packs per year were imputed.

As part of our initial assessment of this approach and its viability, the ini-

tial radiomic space of over 3800 was preprocessed by first removing those with

many missing values (> 20%), and then removing any samples with any missing

radiomics. Following this we removed those features with zero variance and fea-

tures that were highly correlated. Finally the RReliefF feature selector was applied

over the remaining over 500 radiomic features. The Relief family of algorithms

calculate a feature importance value for each feature by calculating the distance

between pairs of near observations which fall in the same and different classes

[61]. To keep the comparisons against cox and logistic fair, we limit the number of
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Figure 4.2: KM curves for AJCC. Grouped into 2 clusters.
Stage I and II as 1∣2 , and Stage III and IV as 3∣4

radiomic features used for modeling.

4.3.2 Cluster Evaluation

We illustrate the applicability of the proposed approach by considering over-

all survival (OS). The details of the particular implementation of our approach are

described and we compare the KM curves for the clusters that summarize the sub-

space. As a baseline of the discrimination of these curves we consider an important

current clinically meaningful categorization AJCC Stage shown in Figure 4.2. We

then evaluate the trained clusters with a 10-fold cross-validation over the metrics.
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First we define 5 subspaces:

1. SS AGE: Age

2. SS SMOKING: Smoking Status (3 categories). Packs Per Year was initially

continuous but binned into 3 categories of 0, Low and High using the mean

of current smokers as threshold for Low and High.

3. SS STANDARD: T Category (4 categories), N Category (4 categories)

4. SS OTHER: Ethnicity (2 categories), Female (2 categories), Tumor Subsite

(3 categories), Therapeutic Combination (4 categories), HPV Status (3 cate-

gories)

5. SS RADIOMICS: All Continuous.

• F25.ShapeVolume

• F29.IntensityDirectGlobalMean

• F29.IntensityDirectLocalRangeMax

• F52.NeighborIntensityDifference25Complexity

The dissimilarities considered for the categorical features were hamming

and jaccard. For the ordinal features (ie. STANDARD subspace) we also consid-

ered manhattan. Whereas for the continuous, it was angular, correlation, absolute

correlation, manhattan, and euclidean. Gradient boosting had selected a low (rela-

tive to the others) influence dissimilarity for the OTHER subspace with the 5 cate-

gorical features. The implementation of gbm used is here [65] with the params set
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for shrinkage to 0.01 and number n.trees 3000. The shrinkage value was used from

an understanding that shrinkage values < 0.1 have better performance. Once all

the top dissimilarities per subspace were determined the ensemble clustering per-

formed over each of these top dissimilarities was using the implementation at [32].

Here the clustering algorithms considered were Partition around Medoids (PAM)

and hierarchical clustering with the ward’s minimum variance linkage method.

These two methods were picked as they are distinctly different from each other.

We selected 25 iterations per cluster as a recommendation of k-modes we later

use [66] of no more than 50 and a scan over k’s from 2 to 3 at 80% resampling. As

we increased the k to scan over, larger k’s ultimately selected per subspace increase

the numbers of parameters to later fit. The consensus function used to create the

clusters for each k was k-modes [66] due to its nature of applicability over cate-

gorical data. The final single clustering assignment from all the k’s chosen in the

implementation of this ensemble is computed using statistical transformations on

the ensemble cluster.

Once all the clusters per subspace are computed we further evaluate that

the log rank test among the curves is significant. The OTHER subspace resulted in

a p-val of .54 and was therefore rejected when using the BH adjustment for mul-

tiple log rank test comparison. This suggest that this subspace cluster is not very

discriminative towards the outcome and as such the clustering is removed from

the final new SDC feature space. The three subspaces that were ultimately clus-

tered are shown in Figures 4.3a, 4.4a and 4.5 which visualize the discrimination
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of these clusters. The p-values in these Figures reject that there is no difference

among/between the curves. Here we clearly see a low and high risk group for two

of the clusterings, and for the three group clustering, an additional medium risk

group. Figure 4.4a results from a clustering of the continuous 4 radiomic feature

signature over a euclidean dissimilarity matrix. Figure 4.3a results from a cluster-

ing of the 2 categorical smoking-related features and Figure 4.5 from a clustering

of the T and N categories. For the the ones that compare two groups, we notice

how these are visually even more discriminative than the standard categorization

shown in Figure 4.2.

In the case that a subspace consists of a single feature such as our AGE

subspace, we do not modify it or cluster it. Rather we use it directly with the

subspace clusters. Therefore the new feature space resulting from these clusterings

and age is the new feature space.

The AIC value against using the original features that composed the entire

space was +1 (less is better for AIC). In AIC there is no hard rule for the threshold

at which a model is better but 3 is a generally acceptable rule of thumb. This

indicates that the model despite having a significantly reduced feature space, and

even discarding 5 features entirely (from OTHER), it is not worse than using all the

features. The initial feature space consisted of 14 features whereas after SDC, we

only have 4 remaining (28%). The difference can be much greater if we account for

the number of parameters fit specially as most of our clinicals were categoricals.
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AUC Brier C-Index Calib

Logistic 0.639 0.123 0.693 20.7

Logistic GAM 0.621 0.126 0.675 14.9

Cox 0.648 0.123 0.702 10.2

Cox GAM 0.643 0.125 0.696 10.7

Logistic 0.626 0.135 0.670 22.6

Logistic GAM 0.568 0.151 0.603 69.1

Cox 0.631 0.129 0.685 12.2

Cox GAM 0.629 0.133 0.671 25.7
SS

 C
lu

st
e

rs
 

+ 
A

ge

O
ri

gi
n

al
 

Fe
at

u
re

s
Table 4.2: Prediction modeling evaluation

4.3.3 Survival Prediction

To provide further robust findings we evaluate the performance using 10-

fold cross validation. The time under consideration is 60 months (needed for eval-

uating Brier for example). Table 4.2 shows that for the parametric logistic and

logistic Generalized Additive Model (GAM), and the semi-parametric cox and cox

GAM, when considering the reduced feature space of SDC, it is either relatively

better or at least as good across all metrics for all 4 methods. All methods except

Logistic, using a rule of thumb of 15 calibration threshold, we consider well cali-

brated. Logistic GAM particularly sees the most improvement for all metrics, AUC

(+9.5%), Brier (+16.4%), C-Index(+12%) and Calibration (+78.4%).
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Figure 4.3: SS SMOKING clustering
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CHAPTER 5
CONCLUSION

This work was able to leverage clustering in head and neck cancer to im-

prove prognosis across various metrics for the outcomes of OS and/or RFS.

In Chapter 3 we showed how for the OS and RFS outcome we improve

prognosis as indicated by the metrics assessed of AUC, Brier and C-Index. Cox

proportional hazard models are widely interpretable and commonly used in the

oncologic community for survival analysis. We evaluate the proposed approach

when the cluster labels are incorporated into a Cox model. However this approach

is potentially extensible to parametric approaches with minor modifications and

could represent an additional step, albeit one not heavily investigated in the cur-

rent study. The utility of a future space reduction has the added value of avoiding

significant overfitting, and this also has potential applications across a wider range

of machine learning style approaches which incorporate right-censored variables.

The second work, Chapter 4 proposed an approach that can indeed find cat-

egorizations within domain defined subspaces which are related to the outcome of

interest. Moreover, our assessment of the metrics AUC, Bried, C-Index and Cal-

ibration indicate that not only can this approach significantly reduce the feature

space, but may also improve prognosis. This can be a very attractive option in

reducing the dimensionality for highly dimensional spaces while still retaining

the ability of interpretability in the various domains. These groupings serve as

a summary of the defined subspaces which can be readily inspected to gain fur-
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ther insights. Similar to Chapter 3 we understand that the method used here, with

minor adjustments, such as finding or using a suitable dependent or proxy depen-

dent variable, and a way to ensure discriminative groupings in the final clustering

to be used, could be explored in other domains. The ability to define subspaces,

formation of distance vectors, gradient boosting and ensemble clustering are not

exclusive to this specific domain either.

A further advantage of using clustering as with the approaches presented is

that missing data can be handled without imputation nor deletion by either com-

puting the distance between the patient and cluster centroids using the known at-

tributes as was done in Chapter 3 or the min distance to the cluster as in Chapter 4

using the known available features. However, a thorough evaluation of missing

data’s effect and performance comparison with established methods for data im-

putation are needed.

5.1 Limitations

As can be expected from the clustering approaches used here, there can be

some information loss when a single feature, the cluster label, is used to represent

an entire set of radiomic features, as is evident in Clin. & Rad from Table 3.6 for

RFS. However despite not outperforming the raw features for RFS, the information

loss can be a tradeoff in order to incorporate too high dimensional spaces.

For many parametric and semi parametric methods such as Cox, the amount

of features that can be considered, specially given the limitation on sample size, is
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constrained despite the availability of increasing number of potentially relevant

features. A limitation for the generalization of the work in Chapter 4 is that even

after vastly reducing the feature space of potential radiomic features to four or one

(the cluster label), the number of features used within the Cox model exceeds the

rule of thumbs of ten events per covariate in the model.

From a clinical perspective, a limitation of the current study is the dearth

of real-time collected human papilloma virus data status on historical patients in

the data set. However it should be noted that this is a major etiologic feature of

head and neck cancers, and necessarily meant that the robustness of our analyses

which incorporated HPV data was reduced by this. We hope in future iterations

to include external validation in larger data sets which would be of significant

value. We attempted to correct for this by using a rigorous cross validation ap-

proach which we hope should demonstrate the robustness of our findings across

potentially generalizable clinical scenarios. However nonetheless, as with any ra-

diomics approach, the extensibility or generalizability of our data to other head

neck cancer databases is contingent upon their similarity to the patient character-

istics, treatment profiles, and demographic information contained herein.

5.2 Future Work

A natural extension of our approach would be to use clustering as a way to

represent other high dimensional spaces related to the outcome such as genomics

and other omics spaces, and then using these labels as potentially useful features
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in prognosis.

There are multiple other directions in which our work can continue. First

is to enable clustering of the large radiomic space in a meaningful way such as

clustering. A colleagues work, Luka Zdilar, in which I collaborated has sought the

use of a proximity matrix derived from random regression forest and random sur-

vival forest where the outcomes where a martingale residuals from a cox model

with clinical covariates, and the raw right-censored outcome, respectively. From

each random forest, a proximity matrix is constructed such that a dissimilarity is

generated on which hierarchical clustering is performed. This ultimately collapses

the entire radiomic space into a single extracted feature without the use of any

feature selection such that it is ultimately used in a cox model. The results there

were promising specially when using random regression forest. Considering this

work, extending it or following its conceptual goal, we can pursue finding novel

approaches to defining meaningful similarities over high dimensional spaces such

that one or few features can be extracted that can ultimately aid in improving prog-

nosis.

Although our work here has focused on creating features used primarily

on Cox or logistic, it is not the case that our clustering approach needs to be con-

strained as a feature extraction technique. Other ways to approach it would be to

use these clusters to weight the samples used in an ensemble or use the dissimilar-

ity measure directly, for example.

Other directions for future work of more clinical interest include further
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evaluation of the clusters per se to identify the attribute-values that characterize

them. A systematic approach to extract what characterizes these cluster may allow

for further decision support or as another hypothesis generating method.

As further evaluation or extensions to the work in Chapter 3 is to consider

the ensemble used in Chapter 4 to first determine the similarities to use and mod-

ify how to validate the number of clusters used, change the type of model fitted

that can scale the feature space after exhaustive evaluation of model assumptions,

and vary the clustering approach considered (or a diversity ensemble) and the dis-

similarity measures considered. We could also combine the approach in Chapter 4

with the scaling done in Chapter 3 where in addition to identifying the more rele-

vant dissimilarities for each subspace, we train one or multiple models to generate

the scaling factors at each subspace.

Although in Chapter 4 we aimed to find groupings that were significantly

discriminative w.r.t. the outcome such that they could be readily inspected, eval-

uation of confounding effects from locally non-significant groupings that may im-

prove the ultimate prognosis would be a valuable endeavor.

A limiting factor in obtaining results was certainly the time complexity bot-

tleneck of ensemble clustering. There are many different variations that can be

explored (the similarity matrix, or consensus matrix, the consensus function, etc)

and/or a variety of clustering with various parameters that within an ensemble

could improve the resulting clustering. Considering distributed programming

for the implementation of these and similar approaches, straightforwardly by the
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ubiquitous MPI or more specialized frameworks such as Spark may be able to con-

siderably cut back on the time taken to execute the results.
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Mário AT Figueiredo, and Marcello Pelillo. Probabilistic consensus cluster-
ing using evidence accumulation. Machine Learning, 98(1-2):331–357, 2015.

[31] Hongfu Liu, Junjie Wu, Tongliang Liu, Dacheng Tao, and Yun Fu. Spectral en-
semble clustering via weighted k-means: Theoretical and practical evidence.
IEEE Transactions on Knowledge and Data Engineering, 29(5):1129–1143, 2017.



www.manaraa.com

72

[32] Derek S Chiu and Aline Talhouk. dicer: an r package for class discovery using
an ensemble driven approach. BMC bioinformatics, 19(1):11, 2018.

[33] Pang-Ning Tan et al. Introduction to Data Mining, (Second Edition). 2019.

[34] Alexey Natekin and Alois Knoll. Gradient boosting machines, a tutorial. Fron-
tiers in neurorobotics, 7:21, 2013.

[35] Joseph A Cruz and David S Wishart. Applications of machine learning in
cancer prediction and prognosis. Cancer informatics, 2:59, 2006.

[36] Konstantina Kourou, Themis P Exarchos, Konstantinos P Exarchos,
Michalis V Karamouzis, and Dimitrios I Fotiadis. Machine learning applica-
tions in cancer prognosis and prediction. Computational and structural biotech-
nology journal, 13:8–17, 2015.

[37] Faisal M Khan and Valentina Bayer Zubek. Support vector regression for
censored data (svrc): a novel tool for survival analysis. In Data Mining, 2008.
ICDM’08. Eighth IEEE International Conference on, pages 863–868. IEEE, 2008.

[38] R John Simes. Treatment selection for cancer patients: application of statistical
decision theory to the treatment of advanced ovarian cancer. Journal of chronic
diseases, 38(2):171–186, 1985.

[39] Philip S Maclin, Jack Dempsey, Jay Brooks, and John Rand. Using neural
networks to diagnose cancer. Journal of medical systems, 15(1):11–19, 1991.

[40] DV Cicchetti. Neural networks and diagnosis in the clinical laboratory: state
of the art. Clinical chemistry, 38(1):9–10, 1992.

[41] Hemant Ishwaran, Udaya B Kogalur, Eugene H Blackstone, and Michael S
Lauer. Random survival forests. The annals of applied statistics, pages 841–860,
2008.

[42] John F Mccarthy, Kenneth A Marx, Patrick E Hoffman, Alexander G Gee,
Philip O’neil, M L Ujwal, and John Hotchkiss. Applications of machine learn-
ing and high-dimensional visualization in cancer detection, diagnosis, and
management. Annals of the New York Academy of Sciences, 1020(1):239–262,
2004.



www.manaraa.com

73

[43] David M Vock, Julian Wolfson, Sunayan Bandyopadhyay, Gediminas Ado-
mavicius, Paul E Johnson, Gabriela Vazquez-Benitez, and Patrick J O’Connor.
Adapting machine learning techniques to censored time-to-event health
record data: A general-purpose approach using inverse probability of cen-
soring weighting. Journal of biomedical informatics, 61:119–131, 2016.

[44] Eric Bair and Robert Tibshirani. Semi-supervised methods to predict patient
survival from gene expression data. PLoS biology, 2(4):e108, 2004.

[45] Sheila Gaynor and Eric Bair. Identification of relevant subtypes via
preweighted sparse clustering. Computational Statistics & Data Analysis,
116:139–154, 2017.

[46] Dechang Chen, Huan Wang, Donald E Henson, Li Sheng, Matthew T Hue-
man, and Arnold M Schwartz. Clustering cancer data by areas between
survival curves. In Connected Health: Applications, Systems and Engineering
Technologies (CHASE), 2016 IEEE First International Conference on, pages 61–66.
IEEE, 2016.

[47] Elnaz Barshan, Ali Ghodsi, Zohreh Azimifar, and Mansoor Zolghadri
Jahromi. Supervised principal component analysis: Visualization, classifi-
cation and regression on subspaces and submanifolds. Pattern Recognition,
44(7):1357–1371, 2011.

[48] Maryam Farhadian, Hossein Mahjub, Jalal Poorolajal, Abbas Moghimbeigi,
and Muharram Mansoorizadeh. Predicting 5-year survival status of patients
with breast cancer based on supervised wavelet method. Osong public health
and research perspectives, 5(6):324–332, 2014.

[49] Ewout W Steyerberg, Andrew J Vickers, Nancy R Cook, Thomas Gerds,
Mithat Gonen, Nancy Obuchowski, Michael J Pencina, and Michael W Kat-
tan. Assessing the performance of prediction models: a framework for some
traditional and novel measures. Epidemiology (Cambridge, Mass.), 21(1):128,
2010.

[50] Frank Harrell. Regression modeling strategies: with applications to linear models,
logistic and ordinal regression, and survival analysis. Springer, 2015.

[51] Walter K Kremers. Concordance for survival time data: fixed and time-
dependent covariates and possible ties in predictor and time. Mayo Foun-
dation, 2007.



www.manaraa.com

74

[52] Thomas A Gerds and Martin Schumacher. Consistent estimation of the ex-
pected brier score in general survival models with right-censored event times.
Biometrical Journal, 48(6):1029–1040, 2006.

[53] Hirotugu Akaike. A new look at the statistical model identification. IEEE
transactions on automatic control, 19(6):716–723, 1974.

[54] Clifford M. Hurvich and Chih-Ling Tsai. Regression and time series model
selection in small samples. Biometrika, 76(2):297–307, 1989.

[55] Hamparsum Bozdogan. Model selection and akaike’s information crite-
rion (aic): The general theory and its analytical extensions. Psychometrika,
52(3):345–370, Sep 1987.

[56] Terry M Therneau and Thomas Lumley. Package ‘survival’. R Top Doc, 128,
2015.

[57] Lawrence Hubert and Phipps Arabie. Comparing partitions. Journal of Classi-
fication, 2(1):193–218, Dec 1985.

[58] Hesham Elhalawani, Abdallah SR Mohamed, Aubrey L White, James Zafereo,
Andrew J Wong, Joel E Berends, Shady AboHashem, Bowman Williams,
Jeremy M Aymard, Aasheesh Kanwar, et al. Matched computed tomogra-
phy segmentation and demographic data for oropharyngeal cancer radiomics
challenges. Scientific data, 4:170077, 2017.

[59] Stef van Buuren and Catharina Gerarda Maria Groothuis-Oudshoorn. mice:
Multivariate imputation by chained equations in r. Journal of statistical soft-
ware, 45(3), 2011. Open Access.

[60] MD Anderson Cancer Center Head, Neck Quantitative Imaging Working
Group, et al. Investigation of radiomic signatures for local recurrence us-
ing primary tumor texture analysis in oropharyngeal head and neck cancer
patients. Scientific reports, 8, 2018.

[61] Marko Robnik-vSikonja and Igor Kononenko. Theoretical and empirical anal-
ysis of relieff and rrelieff. Machine learning, 53(1-2):23–69, 2003.

[62] Hemant Ishwaran, Udaya B Kogalur, and Maintainer Udaya B Kogalur. Pack-
age ‘randomforestsrc’. 2018.

[63] Jerome H Friedman. Greedy function approximation: a gradient boosting
machine. Annals of statistics, pages 1189–1232, 2001.



www.manaraa.com

75

[64] Yoav Benjamini and Yosef Hochberg. Controlling the false discovery rate: a
practical and powerful approach to multiple testing. Journal of the royal statis-
tical society. Series B (Methodological), pages 289–300, 1995.

[65] Greg Ridgeway, Maintainer Harry Southworth, and Suggests RUnit. Package
‘gbm’. Viitattu, 10(2013):40, 2013.

[66] Xue Li, Osmar R Zaı̈ane, and Zhanhuai Li. Advanced data mining and appli-
cations. In Proceedings of Second International Conference, ADMA, pages 14–16.
Springer, 2006.


	Leveraging clustering for dimensionality reduction and improved prognosis in head and neck cancer patients
	Recommended Citation

	tmp.1552060088.pdf.72_dO

